If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+18t+3=0
a = -16; b = 18; c = +3;
Δ = b2-4ac
Δ = 182-4·(-16)·3
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{129}}{2*-16}=\frac{-18-2\sqrt{129}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{129}}{2*-16}=\frac{-18+2\sqrt{129}}{-32} $
| -16t^2+18t-3=0 | | -9=-11+b*8 | | 13=w-14*2 | | 7/60=5/24x+11/12 | | -40=12x+4 | | 1290=x/10+x/5 | | X/10+x/5=1290 | | X+5x=1290 | | 18+9x=-28 | | 5/7t=2/5 | | ((5x12))/3)+30=50 | | 14w-5=12w+23 | | 31=2.25x+4 | | 3x-15/x-3=0 | | 3(x-9)^2=27 | | 6(x-9)=3x | | X+2=3+(1/4)x | | d7+9=15 | | (4a-5)^2=27 | | 7x+8/2=20 | | 5+5x=10+10x | | 2x-6=3x-14 | | 5(x-4)=36-4x | | 5x+x+9+8=2x+3 | | -7x-8-2=4 | | 3x-11=5x+18 | | 65=36+2w | | 4/12=x/80 | | 2=2x-4=10 | | (-1,4);b=8 | | -20=a+7+8a | | (-3,10);b=8 |